# Exercise : 5

(b) 5400

(c) 1800

(d) 6300

(e) None of these

**Ans.b**

Ratio of investment = 6 : 3 : 2

∴ Share of Mr. Ramesh = ^{3}⁄_{11} × 19800 = 5400

(b) 1 : 2

(c) 6 : 13

(d) 13 : 6

(e) None of these

**Ans.d**

Let the total number of hens and sheep be x and y respectively.

i.e., x + y = 38 and 2x + 4y = 100

∴ Ratio = 13 : 6

^{A}⁄

_{B}:

^{B}⁄

_{C}:

^{C}⁄

_{A}is equal to :

(b) 8 : 9 : 12

(c) 8 : 9 : 16

(d) 8 : 9 : 24

**Ans.d**

Let A = 2x, B = 3x and C = 4x. Then,

^{A}⁄_{B} = ^{2x}⁄_{3x} = ^{2}⁄_{3}, ^{B}⁄_{C} = ^{3x}⁄_{4x} = ^{3}⁄_{4} and ^{C}⁄_{A} = ^{4x}⁄_{2x} = ^{2}⁄_{1}

⇒ ^{A}⁄_{B} : ^{B}⁄_{C} : ^{C}⁄_{A} = ^{2}⁄_{3} : ^{3}⁄_{4} : ^{2}⁄_{1} = 8 : 9 : 24

(b) 1500

(c) 2000

(d) 1400

(e) None of these

**Ans.c**

Let the shares of A, B, C and D be 5x, 2x, 4x, 3x respectively.

Then, 4x – 3x = 1000 ⇒ x = 1000

∴ B’s Share = 2x = 2000

(b) 30

(c) 38

(d) 48

(e) None of these

**Ans.b**

A : B = 2 : 3 = 2 × 5 : 3 × 5 = 10 : 15

and B : C = 5 : 8 = 5 × 3 : 8 × 3 = 15 : 24

Therefore, A : B : C = 10 : 15 : 24

∴ A : B : C = 10 : 15 : 24

Let the number be 10x, 15x and 24x.

Then, 10x + 15x + 24x = 98

or 49x = 98 or x = 2

⇒ Second number = 15x = 15 × 2 = 30

(b) 9

(c) 12

(d) 10

(e) None of these

**Ans.c**

Let number of ladies = x

then, number of gents = 2x

Now, \(\frac{x - 2}{2x - 2} = \frac{1}{3}\) ⇒ 3x - 6 = 2x - 2

⇒ x = 4

∴ Total number of people originally present = 4 + 8 = 12

(b) 16,250

(c) 16,500

(d) 15,300

(e) None of these

**Ans.b**

Let Son’s share = S;

Daughter’s share = D;

and Wife’s share = W.

Also, S : W = W : D = 3 : 1

∴ S : W : D = 9 : 3 : 1

then S = 9x , D = x

and 9x – x = 10,000 ⇒ x = 1250

∴ Total worth of the property = (9 + 3 + 1)x = 13x

= 13 × 1250 = 16,250

(b) 30 coins

(c) 28 coins

(d) 25 coins

(e) None of these

**Ans.a**

Let number of each type of coin = x. Then,

1 × x + .50 × x + .25x = 35

⇒ 1.75x = 35 ⇒ x = 20 coins

(b) 10 : 11 : 20

(c) 23 : 33 : 60

(d) Cannot be determined

(e) None of these

**Ans.c**

Let A = 2k, B = 3k and C = 5k.

A’s new salary = ^{115}⁄_{100} of 2k = (^{115}⁄_{100} × 2k) = ^{23}⁄_{10}k

B’s new salary = ^{110}⁄_{100} of 3k = (^{110}⁄_{100} × 3k) = ^{33}⁄_{10}k

C’s new salary = ^{120}⁄_{100} of 5k = (^{120}⁄_{100} × 5k) = 6k

∴ New ratio = ^{23k}⁄_{10} : ^{33k}⁄_{10} : 6k = 23 : 33 : 60

(b) 20,000

(d) 22,000

(d) 10,000

(e) None of these

**Ans.d**

Let number of passengers = x, 2x, 7x

and Rate = 5y, 4y, 2y

Now, since income = Rate × Number of passengers

∴ Income = 5xy, 8xy, 14xy

∴ Income in ratio = 5 : 8 : 14

∴ Income from A.C. sleeper class = \(\frac{5}{5 + 8 + 14} \times 54,000\)

= 10,000