# Exercise : 2

(b) 12

(c) 15

(d) Cannot be determined

(e) None of these

**Ans.c**

Rate % = \(\sqrt{\frac{405 \times 100 \times 100}{18000}}\) = 15%

(b) 33,000

(c) 30,000

(d) 35,000

(e) None of these

**Ans.b**

Let x be the other amount

\ ^{3x}⁄_{10} + 3600 = 900 ⇒ x = 18000

\ total borrowed sum = 33000

(b) 4800

(c) 5000

(d) 5500

(e) None of these

**Ans.c**

Let the sum be x.

512.50 = \(x\left | 1 + \frac{5}{100} \right |^{2} - 1 = x\left | \frac{441 - 400}{400} \right |\)

\ x = \(\frac{512.50 \times 400}{41} = 5000\)

(b) 15000

(c) 1400

(d) Data inadequate

(e) None of these

**Ans.a**

Let ‘x’ be the amount borrowed by Mr Amin.

∴ \(\frac{x \times 2 \times 8}{100} + \frac{x \times 3 \times 11}{100} + \frac{x \times 3 \times 14}{100} = 10920\)

or, ^{91}⁄_{100}x = 10920 or x = \(\frac{10920 \times 100}{91} = 12000\)

(b) 13,500

(c) 12,000

(d) Cannot be determined

(e) None of these

**Ans.c**

Let, in scheme A, Sridharan invest x.

Then, his investment in scheme B = (27000 – x).

Now,

\(x\left ( 1 + \frac{8}{100} \right )^{2} + \left (2700 - x \right )\left ( 1 + \frac{9}{100} \right )^{2}\)– 27000 = 4818.30

or, x(1.08)^{2} + (27000 – x)(1.09)^{2} = 31818.30

or, 1.1664x + 32078.7 – 1.1881x = 31818.30

or, 0.0217x = 260.4

or, x = ^{260.4}⁄_{0.0217} = 12000

(b) 5 pcpa

(c) 4 pcpa

(d) Data inadequate

(e) None of these

**Ans.b**\(\frac{A}{P} = \left ( 1 + \frac{r}{100} \right )^{t} \;\; or, \; \frac{17640}{16000} = \left ( 1 + \frac{r}{100} \right )^{2}\)

^{21}⁄_{20} = 1 + ^{r}⁄_{100}

⇒ r = 5%

(b) 18,500

(c) 17,000

(d) 17,500

(e) None of these

**Ans.e**

Amount = 15000 (1 + ^{10}⁄_{100})^{2}

= 15000 × ^{11}⁄_{10} × ^{11}⁄_{10} = 18150

(b) 48,400

(c) 36,300

(d) 24,200

(e) None of these

**Ans.b**

Ratio A : B = 3 : 2 and A : C = 2 : 1

\ A : B : C = 6 : 4 : 3

Profit share of B = 4 × 1,57,300 = 48400

(b) 8,600

(c) 8,150

(d) Data inadequate

(e) None of these

**Ans.a**

% interest on total amount per annum

= \(\frac{3620 \times 100}{16500 \times 2} = \frac{362}{33} \%\)

Now, use Alligation method.

Hence, ratio of amount invested in schemes A and B

= (12 - ^{362}⁄_{33}) : (^{362}⁄_{33} - 10) = 17 : 16

Hence, amount invested in B = \(\frac{16 \times 16500}{\left (17 + 16 \right )} = 8000\)

(b) 6,000

(c) 12,000

(d) 8,000

(e) None of these

**Ans.d**

Let the sum be x.

Then, \(\left [ x\left ( 1 + \frac{5}{100} \right )^{4} - x \right ] - \left [ \frac{x \times 10 \times 2}{100} \right ] = 124.05\)

Solving the above eqns, we get x = 8,000.